2024/05/19 23:10 1/2 Computational domain

Table of Contents

GSvit documentation - http://www.gsvit.net/wiki/



Last update: 2018/01/24

08:14 fdtd:computational_domain http://www.gsvit.net/wiki/doku.php/fdtd:computational_domain?rev=1437219417

http://www.gsvit.net/wiki/ Printed on 2024/05/19 23:10



2024/05/19 23:10 1/2 Computational domain

To calculate electromagnetic field propagation we want to solve Maxwell's equations that link electric
and magnetic field components and its time and space evolution. The basic idea being FDTD
technique is a succesive update of electric and magnetic field components that are specially placed in
the computational volume as shown on the following image:

T - (i+1, 41, k1)
H,
(i, i, k+1) g
L 7 A
—p —
£ A . / A H,y
/‘:j:/" T > (i+1, 441, 1)
(i}, mﬂj > (i+1.5. 9 |
E:.;

The benefit of this scheme is that we can easily draw a electric field loop around a concrete
component of the magnetic field and vice versa. This simplifies the implementation of rotations in the
Maxwell equations significantly.

Every computation step has two parts:

* Magnetic field components are updated from electric field components from the previous step. *
Electric field components are updated from magnetic field components.

For update of any component we need only surrounding field values which makes the method suitable
for parallelization.

FDTD is a time domain method, so we are always calculating a evolution of electromagnetic field in
time. If we want to get a steady state solution, we need to wait a bit (if this helps) or use some other
technique that is not time domain, e.g. Finite Element Method.

For Yee algorithm implementation on graphics cards (GPU) in Gsvit, the one-to-one correspondence
between GPU threads and computational space points is preserved. The basic data structures are in
the GPU global memory; each thread takes the neighbor values (or whatever is necessary for the
computation) and after computation updates the value in the global memory again. This approach
probably does not use the device memory in an optimum way (shared memory is not used at all), on
the other side this keeps the code very simple and fast enough for all the computational space
volumes tested. In principle, each thread could computed even more points of the computational
volume if necessary; however the size of computational space can be hardly much larger than the
maximum number of GPU threads in principle (such data would not fit into the computer RAM).

GSvit documentation - http://www.gsvit.net/wiki/



Last update: 2018/01/24

08:14 fdtd:computational_domain http://www.gsvit.net/wiki/doku.php/fdtd:computational_domain?rev=1437219417

From:
http://www.gsvit.net/wiki/ - GSvit documentation

Permanent link: (2]
http://www.gsvit.net/wiki/doku.php/fdtd:computational_ domain?rev=1437219417

Last update: 2018/01/24 08:14

http://www.gsvit.net/wiki/ Printed on 2024/05/19 23:10


http://www.gsvit.net/wiki/
http://www.gsvit.net/wiki/doku.php/fdtd:computational_domain?rev=1437219417

	Table of Contents

